

Fruit and Vegetable Harvest and Postharvest Operations

The following mind maps provide an outline that should be used in conjunction with the provided readings. A excellent additional reference is: “Postharvest Technology of Horticultural Crops” 2nd Edition Edited by A.A.Kader, published by University of California, Publication 3311.

The subjects covered by the mindmaps include:

- harvesting
- Transport to Packhouse
- Packhouse operations
 - Sorting
 - Colour
 - Size
 - Packing
- Quality Assurance
 - HACCP
- Packaging (Additional note)

EXERCISE: Using the Mindmaps as the basis, develop a more detailed summary of the readings provided.

1.0 REFERENCES

Section 15

Wills, R., McGlasson, B., Graham, D. & Joyce, D., 1998. Postharvest. An Introduction to the physiology and handling of fruits, vegetables and ornamentals. 4th Ed., Published by UNSW.

FRUIT CROP HARVESTING AND HANDLING

Traceability

Fundamental Principles Engineering

DEFINE Performance Specification and Engineering

- Quality Assurance
- Value Chain
- Food Safety

System Performance Specification

- Safety
- Product Quality

Harvesting

Principles

Post-Harvest

Quality Assurance
- Quality Attributes
- Physical Parameters
- Physical properties
- Food safety
- HACCP
SUPPLY CHAIN MANAGEMENT

7 Principles

- LEVERAGE MANUFACTURING AND SOURCING
 - S.A.P.
 - J.I.T.
 - T.Q.M.
- INTEGRATE SALES AND OPERATIONS PLANNING
- ORGANISE CUSTOMER MANAGEMENT
- BEGIN WITH CUSTOMER
- MANAGE LOGISTICS ASSETS
- DEVELOP CUSTOMER-DRIVEN PERFORMANCE MEASURES

Strategic Alliance

Relationship Management

FOCUS
Integrated Approach to Handling

Guidelines
- How do preharvest cultural factors affect consumer acceptance?
- How does storage at non-optimal conditions affect quality and consumer acceptance?
- Are handlers who adopt new methods properly rewarded for their improvements?

Quality Management
- Operations Research
- Application of Technology and Engineering
- Clearer spec of quality and packing, value, consumer perspectives
- Preharvest factors = variability in quality and storage
- Mean to predict mathematically (modelling systems) period of optimal marketability – to specific handling conditions

Latent damage
- Early detection important
- Lower quality increased cost of production (transportation and sorting add cost)
- Damage incurred at one step but not apparent until later step.
 - Bruising
 - Quiescent infections
 - Physiological disorders
 - Postharvest stress disorders, e.g. chilling injury

Food Safety
- Agricultural chemicals
- Cosmetic appearance
- Alternative methods, e.g. organic
- Pathogens, e.g. *E.coli* species
- *Listeria monocytogenes* (refrigeration.)
Section 15

TRANSPORTATION FROM FIELD

- In field
- Packhouse

- Customer
 - Flavour
 - Appearance
 - Firmness
- Wholesale buyers
- Sellers
- Special breeding
 - Resistance
 - mechanical damage
 - insect/disease damage
- Harvest
 - uniform maturity
 - once-over harvest

Appearance

Resistance
1. Avoid extended forklift movement
2. Minimise rough handling during loading
3. Grade farm/orchard track – keep smooth
4. Avoid uneven/rough public roads
5. Restrict transportation speeds to minimize free movement of front (vibration)
7. Reduce vehicle tyre pressure

BRUISING

- Over filled bins
- Bottom layers
- Shallower bin

Impact

Picking container
- Fruit type = container type
 - Plastic bucket – softer fruit
 - Bottom dump – less pot for compression damage
 - Delicate – pack directly from bucket (peaches)
 - Very soft delicate – pick into package, e.g. strawberries

Field container
- Wooden – vented – cooling – smooth surface
- Plastic liners
- Drop height important (Table 6.2, pp31)
Section 15

PACKING HOUSE OPERATION

Design & Operation of sorting equipment
- Optimising
 - Accuracy
 - Sorting
- Evaluation
 - Sorter productivity
 - Quality
- Space
 - Size
- Variable flow
 - Translation speed
 - Product loading
- View product
 - Sorter position
 - Lighting
 - Location of reject chutes and conveyors
- Worker comfort
- Product injury
- Training/supervision

Analysis of sorting operations
- performance
- modelling
- empirical model
- signal detection theory

(1) Sorting

Visual perception
- Brightness
- Product presentation
- Vision difficulties
- Concentration for long periods

Marketing factors
- producer
- wholesaler
- retailers/distributors
- customer
- price quality

Sorting terminology
- Separation (removal of non-useable material)
- Uniform size (free of insects, blemishes, diseases)
- Maturity (firmness, damage levels)
- Sorting (segregation, marketable, quality categories)
 - Mechanical (colour, sizes
 - Manual (visual, tactical)
- Graders – sorting line, not graders (3rd party inspectors e.g. ENZA, meet classification, online, off-line.
- Sample inspection (Q.C.)

Economics
Section 15

PACKING HOUSE OPERATION (A)

1. **Fruit sizing**
 - Colour
 - Image sizers
 - Weight and/or size

2. **Fruit selection**
 - Capacity
 - Accuracy
 - Injury
 - Adjustment ease
 - Incoming fruit change
 - Adjust fruit diversion patterns
 - Ease: cleaning, maintenance

3. **Special treatments**
 - Presizing
 - Cleaning and washing
 - Waxing/coating
 - Disease control treatment

4. **MECHANICAL VOLUME-FILL TIGHT FILL**

5. **OPERATION: Monday**
 (Frank Bollen, Prussia & Lidrow)
 “To transform the highly variable product received from the harvest operation into uniform lots of product for shipments that comply with the requirements of the buyer.”

6. **Wednesday/Thursday - Packaging**

PACKING FRUIT
- Volume fill packing system
- Packaging material
 - Delivery
 - Removal when full/packed
 - QC check
PACKING HOUSE OPERATION (B)

MECHANICAL
- Volume fill
- Tight fill

HAND PACKING
- Attractive pack
- Fixed count (even size)
- Immobilization (lateral tightness)

PURPOSE OF PACKING
- Immobilized (vibration)
- Cushioned (shock)

PACKING FRUIT
- Volume fill
- Tight fill

PACKING LINE
- Minimize fruit damage (padding)
- Avoid fruit accumulation
- Final sort (QA/QC check)
- Packaging material (delivery, removal when full/packed)
- Avoid bottlenecks.
Section 15

SORT

SIZING

AUTO FILLER

PACKAGING

INSPECTION

MARKING

VIBRATION (if req'd)

PACKAGING LIDS

TOP PADS (if req'd)

CLOSING

PALLETING (automatic)

STORAGE

MECHANICAL PACKERS

DROP HEIGHT
- Minimized
- Shock damage
- Major problem

HIGH SPEED
- Large volumes
- Sorted, graded fruit required

PLACE PACKING SYSTEMS
- Citrus
- Sized fruit
- Pack pattern
- Rubber/plastic cups

DELIVER CAREFULLY SORTED & SIZED FRUIT AND PACKAGING
- Inspection
- Marking
- Top padding (closing operation)

VOLUME FILL
- Weight as approximation of volume
- Check weights (manual, automatic)

TIGHT FILL
- Immobilisation
- Without compression
- Bruising
- Top padding
- Tightly fasten lid
SUMMER
- Rapid cooling and temperature control
 - Successful marketing
- Cooling and cold storage requiring different
- Cooling efficiency
- Modelling systems

TEMPERATURE PROTECTION
- Shade, natural, shade clothe (silver to reflect)
- Prevent warming
- Sun scald

RAPID TRANSPORTATION TO PACKHOUSE
- Covers
 - Silver to reflect
 - Light colour

ROOM COOLING
- Cooling jets
- Cooling bays

FORCED AIR COOLING
- Forced air tunnel
- Cold wall
- Serpentine cooling
- Forced air evaporative cooling
- Container venting

HYDRO-COOLING

PACKAGE-LANG

VACUUM COOLING

COOLING BEFORE PACKAGING

FIELD HEAT

PRE-GRADING AND PACKAGING

POST-GRADING AND PACKAGING

SELECTION

PRODUCT

OPERATING COSTS

OTHER CONSIDERATIONS

limitations

mix

Temperature req.

Energy costs

Tradition
Section 15

ROOM COOLING

COOLING BAYS
- Cooling
- Storage

COOLING BAYS
- Slow heat removal

STORAGE SPACE MANAGEMENT

WELL VENTILATED CONTAINERS

AIR FLOW
- 60 tp 120 m/min

LONG ?? PRODUCE
- Common

ADVANTAGE
- Cooling and storage in the same room (minimises transfers)

DISADVANTAGE
- Too slow (most commodities)
- More space than required (good storage)
- Excessive water loss possible
FORCE-AIR COOLING

- Forced air tunnel (Fig. 8.2)
- Wide range produce
- Forced air movement through containers
- Slight pressure gradient forces movement
- Bins
- Volume of air
- H₂O loss prevented by high % RH
- Container renting
 - Req’d SA
- Cold wait (Figs. 8.4, 8.5)
- Serpentine (Figs. 8.6, 8.7)
- Forced air evaporative cooling (Fig. 8.8)
 - (Fig. 8.8)

2-3 degrees above outside wet bulb temperature and % rH + 90%
HYDRO COOLING

Use of cold water

Advantages
- no water loss
- quick cooling
- efficient heat transfer

Disadvantage
- cooling packed produce
- container to pickup
- clean

Bins

Volume of air

H₂O loss prevented by high % rH

Mechanical water cooling

Shower type
- 600 – 1000 L/min/m² SA (L/min².m²)
- low level chlorine (1 – 2 ppm residual)
- produce tolerance

Cooling times
10 min to 1 hour

Inline cooling
- cherries, small fruit

Flume cooling hydro
- conveying
- cooling

H₂O loss prevented by high % rH
Section 15

Packaging Atmospheric Modification

- **O₂ Control**
 - Recycling/purge generator
 - Catalytic burners ⇒ N₂ purge \[\text{liquid N}_2\]

- **CO₂ Control**
 - Gases CO₂ – gas cylinders
 - CO₂ scrubbers (lime) – sodium hydroxide, water, activated carbon, brine, molecular sieve

- **Membrane Systems**

- **Activated ND Brominated Charcoal**
 - Potassium permanganate
 - Re, pved C₂H₄

- **Ethylene Removal**

- **CO Addition**
CA/MA STORAGE

ADVANTAGES

- RETARDATION
 - Periderm development

- INSECT CONTROL

- POSTHARVEST PATHOGENS
 - 10 – 75% CO₂
 - Inhibit
 - Botrytis rot on
 Strawberries
 Cherries
 Insects

- REDUCTION ETHYLENE SENSITIVITY
 - O₂ < 8% and/or
 - CO₂ > 1%

- PHYSIOLOGICAL DISORDERS
 - Chilling injury

- INITIATION/AGGRAVATION
 - Physiological disorders:
 - Blackout – potatoes
 - Brown stain – lettuce
 - Brown heart – apple/pear

- IRREGULAR RIPENING (pears, tomatoes)
 - O₂ < 2%
 - CO₂ > 5%

DISADVANTAGES

- RETARDATION
 - Respiration
 - Ethylene production
 - Softening
 - Compositional changes
 - Biochemical
 - Physiological

- PHYSIOLOGICAL DISORDERS
 - Chilling injury

- INSECT CONTROL

- POSTHARVEST PATHOGENS
 - 10 – 75% CO₂
 - Inhibit
 - Botrytis rot on
 Strawberries
 Cherries
 Insects

- REDUCTION ETHYLENE SENSITIVITY
 - O₂ < 8% and/or
 - CO₂ > 1%

- PHYSIOLOGICAL DISORDERS
 - Chilling injury

- INITIATION/AGGRAVATION
 - Physiological disorders:
 - Blackout – potatoes
 - Brown stain – lettuce
 - Brown heart – apple/pear

- IRREGULAR RIPENING (pears, tomatoes)
 - O₂ < 2%
 - CO₂ > 5%

- STIMULATION
 - Sprouting, e.g. potato – roots tubers

- OFF FLAVOURS/ODOURS
 - Anaerobic Respiration
 - Very low O₂

- DECAY SUSCEPTIBILITY INCR
 - Low O₂ damage